GMP调度场景场景1

P拥有G1,M1获取P后开始运行G1,G1使用 go func 创建G2,为了局部性G2优先加入到P1的本地队列

场景2

G1运行完成后(函数:goexit),M上运行的goroutine切换为G0,G0负责调度时协程的切换(函数:schedule)。从P的本地队列取G2,从G0切换到G2,并开始运行G2(函数:execute)。实现了线程M1的复用。

场景3

G2在创建G7的时候,发现P1的本地队列已满,需要执行负载均衡(把P1中本地队列中前一半的G,还有新创建G转移到全局队列)

场景4

G2创建G8时,P1的本地队列未满,所以G8会被加入到P1的本地队列。G8加入到P1点本地队列的原因还是因为P1此时在与M1绑定,而G2此时是M1在执行。所以G2创建的新的G会优先放置到自己的M绑定的P上。

场景5

在创建G时,运行的G会尝试唤醒其他空闲的P和M组合去执行。假定G2唤醒了M2,M2绑定了P2,并运行G0,但P2本地队列没有G,M2此时为自旋线程(没有G但为运行状态的线程,不断寻找G)。

场景6

M2尝试从全局队列(简称“GQ”)取一批G放到P2的本地队列(函数:findrunnable())。M2从全局队列取的G数量符合下面的公式:n = min(len(GQ)/GOMAXPROCS + 1, len(GQ/2))

至少从全局队列取1个g,但每次不要从全局队列移动太多的g到p本地队列,给其他p留点。这是从全局队列到P本地队列的负载均衡

场景7

假设G2一直在M1上运行,经过2轮后,M2已经把G7、G4从全局队列获取到了P2的本地队列并完成运行,全局队列和P2的本地队列都空了

全局队列已经没有G,那m就要执行work stealing(偷取):从其他有G的P哪里偷取一半G过来,放到自己的P本地队列。P2从P1的本地队列尾部取一半的G,本例中一半则只有1个G8,放到P2的本地队列并执行。

场景8

G1本地队列G5、G6已经被其他M偷走并运行完成,当前M1和M2分别在运行G2和G8,M3和M4没有goroutine可以运行,M3和M4处于自旋状态,它们不断寻找goroutine。为什么要让m3和m4自旋,自旋本质是在运行,线程在运行却没有执行G,就变成了浪费CPU. 为什么不销毁现场,来节约CPU资源。因为创建和销毁CPU也会浪费时间,我们希望当有新goroutine创建时,立刻能有M运行它,如果销毁再新建就增加了时延,降低了效率。当然也考虑了过多的自旋线程是浪费CPU,所以系统中最多有GOMAXPROCS个自旋的线程(当前例子中的GOMAXPROCS=4,所以一共4个P),多余的没事做线程会让他们休眠。

场景9

假定当前除了M3和M4为自旋线程,还有M5和M6为空闲的线程(没有得到P的绑定,注意我们这里最多就只能够存在4个P,所以P的数量应该永远是M>=P, 大部分都是M在抢占需要运行的P),G7创建了G9,G7进行了阻塞的系统调用,M2和P2立即解绑,P2会执行以下判断:如果P2本地队列有G、全局队列有G或有空闲的M,P2都会立马唤醒1个M和它绑定,否则P2则会加入到空闲P列表,等待M来获取可用的p。本场景中,P2本地队列有G9,可以和其他空闲的线程M5绑定。

场景10

G7创建了G9,假如G7进行了非阻塞系统调用。M2和P2会解绑,但M2会记住P2,然后G7和M2进入系统调用状态。当G7和M2退出系统调用时,会尝试获取P2,如果无法获取,则获取空闲的P,如果依然没有,G7会被记为可运行状态,并加入到全局队列,M2因为没有P的绑定而变成休眠状态(长时间休眠等待GC回收销毁)。