前置知识

\(1.\) 艾佛森括号:
\([P]=\begin{cases}1 & \mathtt{(if\ P\ is \ true)}\\0 & \mathtt{(otherwise)}\end{cases}\)
\(2.\) \(a\mid b\) 表示 \(a\)\(b\) 的因子
\(3.\) 整除分块:\(\displaystyle\sum_{i=1}^n\lfloor\dfrac{N}{i}\rfloor\)
\(4.\) \(p\) 没有特殊说明时表示质数
\(5.\) \(\mathbb{P}\) 表示质数集,\(\mathbb{Z}\) 表示整数集。
\(6.\) 常见的函数:

  • 常函数:\(1(x)=1\)
  • 单位元函数:\(\epsilon(x)=[x=1]\)
  • 恒等函数:\(Id_k(x)=x^k\)
  • 因子函数:\(d(x)=\displaystyle\sum_{i\mid x}1\)
  • 因子和函数:\(\sigma(x)_k=\displaystyle\sum_{i\mid x}i^k\)
  • 欧拉函数:\(\varphi(x)=\displaystyle\sum_{i=1}^x[\gcd(i,x)=1]\)

函数数论函数

数论函数指一类定义域是正整数,值域是一个数集的函数。有:

  • \((f+g)(x)=f(x)+g(x)\)
  • \((x*f)(n)=x*f(n)\)

积性函数

当数论函数 \(f\) 对于 \(\gcd(n,m)=1\) 有:

\[f(nm)=f(n)f(m)\]

则数论函数 \(f\) 为积性函数。
例如:\(d(x),\varphi(x)\)

完全积性函数

当积性函数 \(f\) 对于 \(\gcd(n,m)\not=1\) 仍有:

\[f(nm)=f(n)f(m)\]

则积性函数 \(f\) 为完全积性函数。
例如:\(\epsilon(x),id_k(x)\)

狄利克雷卷积 (dirichlet)

定义两个函数 \(f(n)\)\(g(n)\) 的狄利克雷卷积 \((f*g)(n)\) 其中 \(*\) 为卷积符号:

\[t(n)=\displaystyle\sum_{i|n}f(i)g(\dfrac{n}{i})\Leftrightarrow \displaystyle\sum_{ij}f(i)g(j)\]

同时狄利克雷卷积满足以下一些性质:

  • \(f*g=g*f\)
  • \((f*g)*h=f*(g*h)\)
  • \(f*h+g*h=(f+g)*h\)
  • \((xf)*g=x(f*g)\)
  • \(\epsilon*f=f\)
  • 对于每一个 \(f(1)\not=1\) 的函数 \(f\) 都有逆元 \(g\),使得 \(f*g=\epsilon\)

那么对于一个 \(f(1)\not=1\) 的函数 \(f\) 的逆元 \(g\) 该如何计算呢
我们只需要通过狄利克雷卷积的定义简单推导一下得到:

\[g(n)=\dfrac{1}{f(1)}\left([n=1]-\displaystyle\sum_{i\mid n,i\not=1}f(i)g(\frac{n}{i})\right)\]

这样就有:\(\displaystyle\sum_{i\mid n}f(i)g(\dfrac{n}{i})=f(1)g(n)+\displaystyle\sum_{i\mid n,i\not=1}=[n=1]=\epsilon\)

欧拉函数 (Euler)定义

欧拉函数用 \(\varphi\) 表示,定义:

\[\varphi(n)=\displaystyle\prod_{i=1}^n[\gcd(i,n)=1]\]

解释:\(\varphi(n)\) 表示 \(1\sim n\) 中与 \(n\) 互质的数的个数。

公式

先设 \(n=\displaystyle\prod_{i=1}^kp_i^{t_i}\),则有:

\[\varphi(n)=n\displaystyle\prod_{i=1}^k\left(1-\dfrac{1}{p_i}\right)\]

证明:
我们先假设 \(n\in\mathbb{N^+}\) 只存在质因子 \(p,q\)
考虑容斥,与 \(n\) 互质的数就是所有数减去 \(p,2p,\cdots,\lfloor\dfrac{n}{p}\rfloor,q,2q,\cdots,\lfloor\dfrac{n}{q}\rfloor\)
同时根据容斥原理,需要补回 \(pq,2pq,\cdots,\lfloor\dfrac{n}{pq}\rfloor\)
\(\varphi(n)=n-\dfrac{n}{p}-\dfrac{n}{q}+\dfrac{n}{pq}=n\left(1-\dfrac{1}{p}\right)\left(1-\dfrac{1}{q}\right)\)
那么同理,当 \(n=\displaystyle\prod_{i=1}^{k}p_i^{t_i}\) 时,有:

\[\varphi(n)=n\left(1-\dfrac{1}{p_1}\right)\left(1-\dfrac{1}{p_2}\right)\cdots\left(1-\dfrac{n}{p_k}\right)=n\displaystyle\prod_{i=1}^k\left(1-\dfrac{1}{p_i}\right)\]

积性函数

函数 \(\varphi\) 满足 \(\varphi(nm)=\varphi(n)\varphi(m)\ \ \ (\gcd(n,m)=1)\)
\(\varphi\) 为积性函数。

证明:
\(n=\displaystyle\prod_{i=1}^kp_i^{a_i},m=\displaystyle\prod_{i=1}^tq_i^{b_i}\ \ \ (\gcd(n,m)=1)\)

\[\begin{aligned}\varphi(nm)= & nm\displaystyle\prod_{i=1}^k\left(1-\dfrac{1}{p_i}\right)\displaystyle\prod_{j=1}^t\left(1-\dfrac{1}{q_j}\right)\\= & n\displaystyle\prod_{i=1}^k\left(1-\dfrac{1}{p_i}\right)m\displaystyle\prod_{j=1}^t\left(1-\dfrac{1}{q_j}\right)\\ = & \varphi(n)\varphi(m)\end{aligned}\]

性质\[\displaystyle\sum_{d\mid n}\varphi(d)=n\Leftrightarrow \varphi*1=Id\]

证明:
\(f(n)=\displaystyle\sum_{d\mid n}\varphi(d)\)。则由于:
\(f(n)f(m)=\displaystyle\sum_{i\mid n}\varphi(i)\displaystyle\sum_{j\mid n}\varphi(j)=\displaystyle\sum_{d\mid nm}\varphi(d)=f(nm)\)
可以得到 \(f(n)\) 为积性函数。
\(n=\displaystyle\prod_{i=1}^kp_i^{t_i}\)
而对于 \(f(p^c)=\displaystyle\sum_{i=1}^c\varphi(p^i)=\displaystyle\sum_{i=1}^cp^i-p^{i-1}=p^c\)
\(\therefore f(n)=\displaystyle\prod_{i=1}^kf(p_i^{t_i})=\displaystyle\prod_{i=1}^kp_i^{t_i}=n\)

实现

我们可以通过线性筛筛质数的时候是顺便就把欧拉函数筛出来。

void Euler(int n){    phi[1]=1;    for (int i=2;in)break;            isp[p*i]=1;            if (!(i%p)){                phi[p*i]=phi[i]*p;                break;            }else phi[p*i]=phi[p]*phi[i];        }    }}

莫比乌斯函数 (Möbius)定义

莫比乌斯函数用 \(\mu\) 表示,定义:

\[\mu(x)=\begin{cases}0 & x=1\\1 & \exists p\in\mathbb{Z},p^2\mid x\\(-1)^k & \displaystyle\prod_{i=1}^kp_i(1\le i,j\le j,p_i\not=p_j)\end{cases}\]

解释一下对 \(\mu(x)\) 的定义:

  • \(x=1\) 时,\(\mu(x)=1\)
  • \(x\) 含有任何的质因子的幂次 \(\ge 2\)\(\mu(x)=0\)
  • \(x=\displaystyle\prod_{i=1}^kp_i\),且所有 \(p_i\) 的互不相同时,\(\mu(x)=(-1)^k\)

性质

只知道莫比乌斯函数的定义还远远不够,我们还需要了解一下他的性质:

  • \(n\in\mathbb{N^+},\displaystyle\sum_{d\mid n}\mu(d)=[n=1],\mu*1=\epsilon\)

证明:

\(n=1\) 时,\(\displaystyle\sum_{d|n}=\mu(1)=1=[n=1]\)

\(n>1\) 时,我们记 \(n=\displaystyle\prod_{i=1}^kp_i^{t_i}\)
\(\exists t_i,t_i>1\) 时,\(\mu(n)=0\)
\(\forall t_i,t_i=1\) 时,对于 \(\mu(d)=(-1)^r\) 这样的存在 \(C_k^r\) 个。
\(\therefore \displaystyle\sum_{d\mid n}\mu(d)=C_k^0+C_k^1+C_k^2+\cdots+(-1)^kC_k^k=\displaystyle\sum_{i=0}^k(-1)^iC_k^i\)
由二项式定理:\((x+y)^n=\displaystyle\sum_{i=0}^nC_n^ix^iy^{n-i}\)
\(\therefore \displaystyle\sum_{d\mid n}\mu(d)=\displaystyle\sum_{i=0}^k(-1)^iC_k^i=(-1+1)^n=0\)

  • \(\displaystyle\sum_{d\mid n}\dfrac{\mu(d)}{d}=\dfrac{\varphi(n)}{n}\)

证明:
\(\begin{aligned}\displaystyle\sum_{d\mid n}\dfrac{\mu(d)}{d}=&\displaystyle\sum_{d\mid n}\dfrac{\mu(d)\frac{n}{d}}{n}\\=& \dfrac{\displaystyle\sum_{d\mid n}\mu(d)Id\left(\frac{n}{d}\right)}{n}\\= & \dfrac{\mu(n)*Id(n)}{n}\end{aligned}\)
根据 \(\varphi*1=Id\Leftrightarrow\varphi*1*\mu=\mu*Id\Leftrightarrow\varphi*\epsilon=\mu*Id\)
\(\displaystyle\sum_{d\mid n}\dfrac{\mu(d)}{d}=\dfrac{\mu(n)*Id(n)}{n}=\dfrac{\varphi(n)}{n}\)

实现

和欧拉函数一样,也可以在筛质数的时候顺便得到。

void getMu(int n){    mu[1]=1;isp[0]=isp[1]=1;    for(int i=2;i<=n;++i){        if(!isp[i])mu[p[++cnt]=i]=-1;        for(int j=1;j<=cnt&&p[j]*i<=n;++j){            isp[i*p[j]]=1;            if(!(i%p[j]))break;            else mu[p[j]*i]=-mu[i];        }    }}

莫比乌斯反演

当存在有两个函数 \(f\)\(g\) 满足:\(f(n)=\displaystyle\sum_{d|n}g(d)\)\(f=g*1\)
则一定有:

\[g(n)=\displaystyle\sum_{d|n}f(n)\mu(\dfrac{n}{d}),即 g=f*\mu\]

证明:

\[f=g*1\Leftrightarrow f*\mu=g*1*\mu \Leftrightarrow f*\mu=g\]

倍数形式:

\[g(n)=\displaystyle\sum_{n\mid d}f(d)\Leftrightarrow f(n)=\displaystyle\sum_{n\mid d}\mu(\dfrac{d}{n})g(d)\]例题

\(1.\) P2522 Problem B
\(\displaystyle\sum_{i=a}^b\displaystyle\sum_{j=c}^d[\gcd(i,j)=k]\)

\(f(k)=\displaystyle\sum_{i=1}^n\displaystyle\sum_{j=1}^m[\gcd(i,j)=k],g(n)=\displaystyle\sum_{n\mid k}f(k)\)
则通过莫比乌斯反演的倍数形式可以得到: \(f(x)=\displaystyle\sum_{x\mid k}\mu(\lfloor\dfrac{k}{x}\rfloor)g(k)\)
我们在考虑对于函数 \(g\) 的处理:
\(\begin{aligned}g(x)=&\displaystyle\sum_{x\mid k}\displaystyle\sum_{i=1}^n\displaystyle\sum_{j=1}^m[\gcd(i,j)=k]\\=&\displaystyle\sum_{i=1}^n\displaystyle\sum_{j=1}^m[x\mid \gcd(i,j)]\\=&\displaystyle\sum_{i=1}^{\lfloor\frac{n}{x}\rfloor}\displaystyle\sum_{j=1}^{\lfloor\frac{m}{x}\rfloor}[1\mid \gcd(i,j)]\\=&\lfloor\dfrac{n}{x}\rfloor\lfloor\dfrac{m}{x}\rfloor\end{aligned}\)
我们在将函数 \(g\) 带回函数 \(f\),同时枚举 \(\lfloor\dfrac{k}{x}\rfloor\) 记为 \(t\)
\(f(x)=\displaystyle\sum_{t=1}^{\min(n,m)}\mu(t)\lfloor\dfrac{n}{tx}\rfloor\lfloor\dfrac{m}{tx}\rfloor\)
那么对于最后的答案我们只需要一个简单的容斥:
\(ans=\displaystyle\sum_{i=1}^b\displaystyle\sum_{j=1}^d[\gcd(i,j)=k]-\displaystyle\sum_{i=1}^{a-1}\displaystyle\sum_{j=1}^d[\gcd(i,j)=k]-\displaystyle\sum_{i=1}^b\displaystyle\sum_{j=1}^{c-1}[\gcd(i,j)=k]+\displaystyle\sum_{i=1}^{a-1}\displaystyle\sum_{j=1}^{c-1}[\gcd(i,j)=k]\)
通过上的函数 \(f,g\) 带入即可,通过整除分块可以得到时间复杂度 \(O(\sqrt{n})\)